ทฤษฎีระบบควบคุม

ทฤษฎีระบบควบคุม (control theory) เป็นสาขาหนึ่งของคณิตศาสตร์และวิศวกรรมศาสตร์ ในที่นี้ การควบคุมหมายถึง การควบคุมระบบพลศาสตร์ ให้มีค่าเอาต์พุตที่ต้องการ โดยการป้อนค่าอินพุตที่เหมาะสมให้กับระบบ ตัวอย่างที่เห็นได้ทั่วไป เช่น ระบบควบคุมอุณหภูมิห้องของเครื่องปรับอากาศ หรือ แม้แต่ลูกลอยในโถส้วม ที่เปิดน้ำปิดน้ำโดยอัตโนมัติเมื่อน้ำหมดและน้ำเต็ม การควบคุมการขับเคลื่อนยานพาหนะ เช่น รถยนต์ ก็ถือเป็นการควบคุมชนิดหนึ่ง โดยผู้ขับขี่เป็นผู้ควบคุมทิศทางและความเร็ว ซึ่งระบบควบคุมประเภทที่ต้องมีคนเข้ามาเกี่ยวข้องนี้ถือว่าเป็น ระบบควบคุมไม่อัตโนมัติ (manual control) แต่ทฤษฎีระบบควบคุมจะครอบคลุมเฉพาะการวิเคราะห์และออกแบบ ระบบควบคุมอัตโนมัติ (automatic control) เท่านั้น เช่น ระบบขับเคลื่อนอัตโนมัติ (cruise control) ระบบควบคุมยังอาจแบ่งออกได้เป็นระบบควบคุมวงเปิด (open-loop control) คือ ระบบควบคุมที่ไม่ได้ใช้สัญญาณจากเอาต์พุต มาบ่งชี้ถึงลักษณะการควบคุม ส่วนระบบควบคุมวงปิด (closed-loop control) หรือ ระบบป้อนกลับ (feedback control) นั้นจะใช้ค่าที่วัดจากเอาต์พุต มาคำนวณค่าการควบคุม นอกจากนี้ยังอาจแบ่งได้ตามคุณลักษณะของระบบ เช่น เป็นเชิงเส้น (linear) / ไม่เป็นเชิงเส้น (nonlinear) , แปรเปลี่ยนตามเวลา (time-varying) / ไม่เปลี่ยนแปลงตามเวลา (time-invariant) และเวลาต่อเนื่อง (Continuous time) / เวลาไม่ต่อเนื่อง (Discontinuous time)การใช้ระบบควบคุมวงปิด นั้นมีมาแต่โบราณกาล ตัวอย่างเช่น นาฬิกาน้ำของกรีก ซึ่งมีการใช้ลูกลอยในการควบคุมระดับน้ำในถัง อุปกรณ์ที่ถือว่าเป็นจุดเริ่มต้น ของการใช้ระบบควบคุมป้อนกลับในวงการอุตสาหกรรม ก็คือ ลูกเหวี่ยงหนีศูนย์กลาง (centrifugal governor หรือเรียก fly-ball governor) ในการควบคุมความเร็วในการหมุน เครื่องจักรไอน้ำที่ประดิษฐ์ขึ้นโดย เจมส์ วัตต์ ในปี ค.ศ. 1788 ในยุคก่อนหน้านี้ การออกแบบระบบควบคุมต่าง ๆ นั้น เป็นไปในลักษณะลองผิดลองถูก ไม่ได้มีการใช้คณิตศาสตร์ในการวิเคราะห์ ออกแบบแต่อย่างใด จนกระทั่งในปี ค.ศ. 1840 นักดาราศาสตร์ชาวอังกฤษ จอร์จ แอรี ได้ประดิษฐ์อุปกรณ์ควบคุมทิศทางของกล้องดูดาว โดยอุปกรณ์นี้จะหมุนกล้องดูดาว เพื่อชดเชยกับการหมุนของโลกโดยอัตโนมัติ ในระหว่างการออกแบบ แอรีได้สังเกตถึงความไม่เสถียร (instability) ของระบบป้อนกลับ จึงใช้สมการเชิงอนุพันธ์ในการจำลองและวิเคราะห์พฤติกรรมของระบบ การวิเคราะห์เสถียรภาพของระบบนี้เป็นหัวใจสำคัญของทฤษฎีระบบควบคุม

joker123

ในปี ค.ศ. 1868 เจมส์ เคลิร์ก แมกซ์เวลล์ เป็นบุคคลแรก ที่ทำการศึกษาถึงเสถียรภาพของ ลูกเหวี่ยงหนีศูนย์กลางของ เจมส์ วัตต์ โดยใช้แบบจำลองสมการเชิงอนุพันธ์เชิงเส้น ทฤษฎีเสถียรภาพของระบบเชิงเส้นของแมกซ์เวลล์นี้ พิจารณาเสถียรภาพของระบบจาก รากของสมการคุณลักษณะ (characteristic equation) ของระบบ ต่อมาในปี ค.ศ. 1892 เลียปูนอฟได้ทำการศึกษาถึงเสถียรภาพของระบบไม่เป็นเขิงเส้น และสร้างทฤษฎีเสถียรภาพของเลียปูนอฟ (Lyapunov stability) แต่ทฤษฎีของเลียปูนอฟนี้เป็นทฤษฎีที่สำคัญที่ไม่ได้รับความสนใจ จนกระทั่งหลายสิบปีต่อมา ระบบควบคุมแบบดั้งเดิม (อังกฤษ: classical control) หมายถึง ระบบควบคุมที่ออกแบบและวิเคราะห์บนโดเมนความถี่ (หรือโดเมนการแปลงฟูรีเย) และโดเมนการแปลงลาปลาส โดยการใช้แบบจำลองในรูปของ ฟังก์ชันส่งผ่าน (transfer function) โดยไม่ได้ใช้ข้อมูลรายละเอียดของไดนามิกส์ภายในของระบบ (internal system dynamic) พัฒนาการของทฤษฎีระบบควบคุมในช่วงนี้นั้น ส่วนใหญ่พัฒนาขึ้นเพื่อประยุกต์ใช้งานในทางทหารและทางระบบสื่อสาร อันเนื่องมาจากสงครามโลกครั้งที่สอง และ การขยายตัวของโครงข่ายสื่อสารโทรศัพท์ ในช่วงยุคที่มีการขยายตัวของระบบสื่อสารโทรศัพท์นั้น ระบบสื่อสารทางไกลมีความจำเป็นต้องใช้อุปกรณ์ขยายสัญญาณด้วยหลอดสุญญากาศ ในปี ค.ศ. 1927 แนวความคิดและประโยชน์ของระบบป้อนกลับแบบลบ ได้ถูกนำเสนอในรูปของ อุปกรณ์ขยายสัญญาณป้อนกลับแบบลบ (negative feedback amplifier) โดย เอช. เอส. แบล็ก แต่การวิเคราะห์เสถียรภาพของระบบขยายสัญญาณตามทฤษฎีของแมกซ์เวลล์ โดยใช้วิธีของ เราท์-ฮิวรวิทซ์ (Routh-Hurwitz) นั้นเป็นไปได้ยาก เนื่องจากความซับซ้อนของระบบ วิศวกรสื่อสารของ Bell Telephone Laboratories จึงได้นำเสนอการวิเคราะห์บนโดเมนความถี่ โดยในปี ค.ศ. 1932 แฮร์รี่ ไนควิสต์นำเสนอ เกณฑ์เสถียรภาพของไนควิสต์ (Nyquist stability criterion) ซึ่งใช้วิธีการพล็อตกราฟเชิงขั้ว ของผลตอบสนองความถี่ตลอดวงรอบ (loop frequency response) ของระบบ ต่อมาในปี ค.ศ. 1940 เฮนดริค โบดีได้นำเสนอวิธีการวิเคราะห์เสถียรภาพโดยขอบเขตอัตราขยาย (gain margin) และขอบเขตมุม (phase margin) จากกราฟระหว่างขนาดและมุม (phase) ของผลตอบสนองความถี่ เรียกว่า โบดีพล็อต (Bode plot)

สล็อต

พัฒนาการเพื่อการใช้งานทางด้านการทหาร ปัญหาหลายปํญหาในทางหทาร เช่น ปัญหาการนำร่องการเดินเรืออัตโนมัติ ปัญหาการเล็งเป้าโดยอัตโนมัติ นั้นเป็นแรงผลักดันสำคัญให้เกิดการพัฒนาการทางทฤษฎีระบบควบคุมที่สำคัญหลายอย่าง ในปี ค.ศ. 1922 มินอร์สกี (N. Minorsky) ได้กำหนดและวิเคราะห์กฎของ ระบบควบคุมพีไอดี หรือ สัดส่วน-ปริพันธ์-อนุพันธ์ (proportional-integral-derivative) ซึ่งยังเป็นที่นิยมใช้อย่างกว้างขวางในปัจจุบัน เพื่อใช้ในการนำร่องการเดินเรือ ปัญหาที่สำคัญในช่วงนั้นคือ การเล็งเป้าของปืนจากเรือหรือเครื่องบิน ซึ่งในปี ค.ศ. 1934 ฮาเซน (H.L. Házen) ได้บัญญัติคำสำหรับประเภทปัญหาการควบคุมกลไกนี้ว่า กลไกเซอร์โว (servomechanisms) การวิเคราะห์และออกแบบนั้นก็ใช้วิธีการบนโดเมนความถี่ จนกระทั่งในปีค.ศ. 1948 อีแวนส์ (W. R. Evans) ซึ่งทำงานกับปัญหาทางด้านการนำร่องและควบคุมเส้นทางบิน ซึ่งส่วนใหญ่นั้นเป็นระบบที่ไม่เสถียร ได้ประสบกับปํญหาการวิเคราะห์เสถียรภาพบนโดเมนของความถี่ จึงได้หันกลับไปศึกษาถึงรากของสมการคุณลักษณะ ซึ่งเป็นวิธีการวิเคราะห์บนโดเมนการแปลงลาปลาส และได้พัฒนาวิธี ทางเดินราก (root locus) ในการออกแบบระบบ
ระบบควบคุมสมัยใหม่ แบบจำลองทางคณิตศาสตร์ของเพนดูลัมผกผันสามารถประยุกต์ใช้กับระบบควบคุมการทรงตัวของพาหนะอย่าง เซกเวย์ (Segway) ได้ อุปกรณ์ที่ต้องการความแม่นยำและความละเอียดสูงอย่างหัวอ่านข้อมูลของฮาร์ดดิสก์ จำเป็นที่จะต้องมีการออกแบบตัวควบคุมที่มีประสิทธิภาพ ทนทานต่อการรบกวนต่าง ๆ ได้เป็นอย่างดี อาทิเช่น การสั่นสะเทือน, ผลกระทบจากกระแสไฟฟ้าในระบบเกิน เป็นต้น ระบบควบคุมสมัยใหม่ ( modern control) หมายถึง ระบบควบคุมที่ไม่ได้ใช้เทคนิคในการออกแบบแบบดั้งเดิม คือ จากรากของสมการคุณลักษณะ และอยู่บนโดเมนความถี่ แต่เป็นการออกแบบ โดยมีพื้นฐานจากแบบจำลองสมการอนุพันธ์ของไดนามิกส์ของระบบ และเป็นการออกแบบอยู่บนโดเมนเวลา แรงผลักดันของพัฒนาการจากระบบควบคุมแบบดั้งเดิม มาสู่ระบบควบคุมสมัยใหม่นี้ มีอยู่หลัก ๆ สองประการคือ

สล็อตออนไลน์

ข้อจำกัดของระบบควบคุมแบบดั้งเดิมต่องานด้านอวกาศยาน : จากความสำเร็จในการส่งดาวเทียมสปุตนิก 1 ของสหภาพโซเวียตในปี ค.ศ. 1957 นั้นกระตุ้นให้เกิดความตื่นตัวของการประยุกต์ใช้งานทางด้านอวกาศยาน ความสำเร็จของโซเวียตนั้นเนื่องมาจากพัฒนาการทางด้านทฤษฎีระบบควบคุมแบบไม่เป็นเชิงเส้น ซึ่งไม่ได้รับความสนใจมากนักจากประเทศตะวันตก เนื่องจากความล้มเหลวในการใช้เทคนิคต่าง ๆ ของระบบควบคุมแบบดั้งเดิม กับงานด้านอวกาศยาน ซึ่งระบบส่วนใหญ่นั้น เป็นระบบหลายตัวแปรแบบไม่เป็นเชิงเส้น (nonlinear multivariable system) จึงมีการหันกลับมาพิจารณาการวิเคราะห์จากปัญหาดั้งเดิม ในรูปของแบบจำลองสมการอนุพันธ์ของระบบ การประยุกต์ใช้คอมพิวเตอร์กับงานระบบควบคุม พัฒนาการของคอมพิวเตอร์ มีส่วนสำคัญในการพัฒนาทฤษฎีต่าง ๆ ของระบบควบคุม เนื่องจากทำให้สามารถสร้างอุปกรณ์ควบคุมที่สามารถทำงานซับซ้อนได้ รวมทั้งการใช้คอมพิวเตอร์ช่วยคำนวณในการออกแบบกฎของการควบคุม ดังนั้นจึงมีการพัฒนาระบบควบคุมแบบต่าง ๆ ขึ้นอย่างมากมาย ด้วยเหตุดังกล่าว จึงมีการพัฒนาทฤษฎีระบบควบคุม จากหลายแง่มุม จากความพยายามในการใช้คอมพิวเตอร์ซึ่งเป็นดิจิทัล เพื่อการควบคุมระบบซึ่งโดยส่วนใหญ่จะเป็นระบบอนาล็อก จึงส่งผลให้มีการพัฒนาทางทฤษฎีระบบควบคุมดิจิทัล ( digital control) โดยในปี ค.ศ. 1952 จอห์น รากัซซินี (J.R. Ragazzini) , แฟรงคลิน (G Franklin) และ ซาเดห์ (L.A. Zadeh ผู้คิดค้นฟัซซี่ลอจิก) ที่มหาวิทยาลัยโคลัมเบีย ได้พัฒนาทฤษฎีระบบแบบชักข้อมูล (sampled data systems) ขึ้น การใช้คอมพิวเตอร์ในการควบคุมกระบวนการในอุตสาหกรรมนั้น ครั้งแรกในปี ค.ศ. 1959 ที่ โรงกลั่นน้ำมัน พอร์ต อาเธอร์ (Port Arthur) ในรัฐเท็กซัส

jumboslot

นอกจากนั้นแล้วแนวความคิดของการควบคุมที่ซับซ้อนขึ้นโดยมีการรวม ข้อกำหนดความต้องการทางด้านประสิทธิภาพ (performance) ในการออกแบบระบบควบคุม ซึ่งเรียกว่า ระบบควบคุมแบบเหมาะสมที่สุด (optimal control) รากฐานของทฤษฎีระบบควบคุมแบบเหมาะสมที่สุดนี้มีมายาวนานตั้งแต่ปี ค.ศ. 1696 จาก หลักของความเหมาะสมที่สุด (principle of optimality) ในปัญหา บราคิสโตโครน (Brachistochrone curve) และ แคลคูลัสของการแปรผัน (Calculus of variations) ในปีค.ศ. 1957 ริชาร์ด เบลแมน ได้ประยุกต์ใช้วิธีการกำหนดการพลวัตของเขาในการแก้ปัญหาระบบควบคุมแบบเหมาะสมที่สุด แบบเวลาไม่ต่อเนื่อง ต่อมาในปีค.ศ. 1958 พอนเทรียกิน (L.S. Pontryagin) ได้พัฒนา หลักการมากที่สุด (maximum principle หรือบางครั้งก็เรียก minimum principle) สำหรับแก้ปัญหาในรูปของแคลคูลัสของการแปรผัน แบบเวลาต่อเนื่อง ตัวกรองคาลมานนำร่อง ลูนาร์โมดูล ของ อพอลโล่ 11 สู่พื้นผิวดวงจันทร์ การสังเกตถึงผลกระทบของสัญญาณรบกวนต่อประสิทธิภาพของระบบควบคุมนั้นมีมาตั้งแต่ในช่วงระบบควบคุมยุคดั้งเดิม เช่นในช่วงสงครามโลกครั้งที่สอง ในการพัฒนาระบบควบคุมสำหรับเรดาร์ติดเครื่องบิน เพื่อควบคุมการยิง ที่ ห้องทดลองเรดิเอชัน (Radiation Lab) ที่ เอ็มไอที, ฮอลล์ (A.C. Hall) ได้ประสบปัญหาในการออกแบบ เขาได้สังเกตถึงผลกระทบจากการออกแบบที่ไม่ได้คำนึงถึงสัญญาณรบกวนต่อประสิทธิภาพของระบบ ถึงแม้ว่าจะมีการคำนึงถึงผลกระทบของสัญญาณรบกวน แต่ก็ไม่ได้มีการใช้แบบจำลองทางคณิตศาสตร์ของสัญญาณรบกวนในการวิเคราะห์แต่อย่างใด จนกระทั่ง นอร์เบิร์ต วีนเนอร์ ได้จำลองสัญญาณรบกวน โดยใช้แบบจำลองกระบวนการสตอแคสติก หรือ แบบจำลองทางสถิติ แบบเวลาต่อเนื่อง ในการพัฒนาระบบเล็งเป้าและควบคุมการยิงปืนต่อต้านอากาศยาน โดยใช้ข้อมูลจากเรดาร์ ซึ่งงานของเขาได้ถูกเก็บเป็นความลับ จนถึงปี ค.ศ. 1949 ในช่วงเดียวกันในปี ค.ศ. 1941 คอลโมโกรอฟ ก็ได้ทำการพัฒนาแบบจำลองสำหรับระบบเวลาไม่ต่อเนื่องขึ้น ระบบควบคุมที่ใช้แบบจำลองสคอแคสติกนี้ในการวิเคราะห์ จะเรียกว่า ระบบควบคุมสตอแคสติก (Stochastic control) การวิเคราะห์และควบคุมระบบบนโดเมนเวลา โดยใช้แบบจำลองตัวแปรสถานะ หรือ แบบจำลองปริภูมิสถานะ (state space) นั้นเป็นหัวใจของทฤษฎีระบบควบคุมสมัยใหม่ รูดอล์ฟ อีมิว คาลมาน และ Bellman นั้นถือได้ว่าเป็นบุคคลที่มีส่วนสำคัญในการพัฒนาทฤษฎีระบบควบคุมโดยใช้แบบจำลองตัวแปรสถานะนี้ โดยที่ในปี ค.ศ. 1960 คาลมานได้นำทฤษฎีเสถียรภาพของเลียปูนอฟมาใช้ในการออกแบบระบบ ซึ่งเป็นผลให้ผลงานของเลียปูนอฟกลับมาได้รับความสนใจ นอกจากนี้แนวทางใหม่นี้ยังสามารถตอบคำถามเกี่ยวกับลักษณะเฉพาะของตัวระบบได้ ได้แก่ สภาพควบคุมได้ (controllability) สภาพสังเกตได้ (observability) ผลสัมฤทธิ์เล็กสุดเฉพาะกลุ่ม (minimal realization) และยังนำไปสู่การออกแบบตัวควบคุมแบบใหม่ เช่น การวางขั้ว (pole placement) ตัวควบคุมอิงตัวสังเกต (observer-based controller) และตัวควบคุมกำลังสองเชิงเส้นเหมาะที่สุด (optimal linear quadratic regulator) คาลมานได้พัฒนาวิธีการออกแบบระบบควบคุมแบบเหมาะสมที่สุด จากแบบจำลองปริภูมิสถานะ ในรูปของปัญหาระบบเชิงเส้นคงค่าแบบเหมาะสมที่สุดตามสมการกำลังสอง หรือ LQR (linear quadratic regulator) ในปีเดียวกันนี้ คาลมานได้นำเสนอผลงานของเขาในการประยุกต์ใช้แบบจำลองตัวแปรสถานะนี้เข้ากับแนวความคิดทางด้านสตอแคสติกของวีนเนอร์ และคิดค้นสิ่งที่เรารู้จักกันในชื่อ ตัวกรองคาลมาน (Kalman filter) ขึ้นมา โดยการใช้งานจริงครั้งแรกของตัวกรองคาลมาน นั้นได้ถูกประยุกต์เป็นส่วนหนึ่งของระบบนำร่องในโครงการอพอลโล ตั้งแต่นั้นมาตัวกรองคาลมานก็ได้ถูกประยุกต์ใช้งานอย่างกว้างขวางในปัจจุบัน
[NPC5]